1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/**
* $Revision: 4005 $
* $Date: 2006-06-16 08:58:27 -0700 (Fri, 16 Jun 2006) $
*
* Copyright (C) 2006 Jive Software. All rights reserved.
*
* This software is published under the terms of the GNU Public License (GPL),
* a copy of which is included in this distribution.
*/
package org.jivesoftware.util;
import java.util.Date;
import java.util.Map;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;
/**
* Performs tasks using worker threads. It also allows tasks to be scheduled to be
* run at future dates. This class mimics relevant methods in both
* {@link ExecutorService} and {@link Timer}. Any {@link TimerTask} that's
* scheduled to be run in the future will automatically be run using the thread
* executor's thread pool. This means that the standard restriction that TimerTasks
* should run quickly does not apply.
*
* @author Matt Tucker
*/
public class TaskEngine {
private static TaskEngine instance = new TaskEngine();
/**
* Returns a task engine instance (singleton).
*
* @return a task engine.
*/
public static TaskEngine getInstance() {
return instance;
}
private Timer timer;
private ExecutorService executor;
private Map<TimerTask, TimerTaskWrapper> wrappedTasks = new ConcurrentHashMap<TimerTask, TimerTaskWrapper>();
/**
* Constructs a new task engine.
*/
private TaskEngine() {
timer = new Timer("timer-openfire", true);
executor = Executors.newCachedThreadPool(new ThreadFactory() {
final AtomicInteger threadNumber = new AtomicInteger(1);
public Thread newThread(Runnable runnable) {
// Use our own naming scheme for the threads.
Thread thread = new Thread(Thread.currentThread().getThreadGroup(), runnable,
"pool-openfire" + threadNumber.getAndIncrement(), 0);
// Make workers daemon threads.
thread.setDaemon(true);
if (thread.getPriority() != Thread.NORM_PRIORITY) {
thread.setPriority(Thread.NORM_PRIORITY);
}
return thread;
}
});
}
/**
* Submits a Runnable task for execution and returns a Future
* representing that task.
*
* @param task the task to submit.
* @return a Future representing pending completion of the task,
* and whose <tt>get()</tt> method will return <tt>null</tt>
* upon completion.
* @throws java.util.concurrent.RejectedExecutionException if task cannot be scheduled
* for execution.
* @throws NullPointerException if task null.
*/
public Future<?> submit(Runnable task) {
return executor.submit(task);
}
/**
* Schedules the specified task for execution after the specified delay.
*
* @param task task to be scheduled.
* @param delay delay in milliseconds before task is to be executed.
* @throws IllegalArgumentException if <tt>delay</tt> is negative, or
* <tt>delay + System.currentTimeMillis()</tt> is negative.
* @throws IllegalStateException if task was already scheduled or
* cancelled, or timer was cancelled.
*/
public void schedule(TimerTask task, long delay) {
timer.schedule(new TimerTaskWrapper(task), delay);
}
/**
* Schedules the specified task for execution at the specified time. If
* the time is in the past, the task is scheduled for immediate execution.
*
* @param task task to be scheduled.
* @param time time at which task is to be executed.
* @throws IllegalArgumentException if <tt>time.getTime()</tt> is negative.
* @throws IllegalStateException if task was already scheduled or
* cancelled, timer was cancelled, or timer thread terminated.
*/
public void schedule(TimerTask task, Date time) {
timer.schedule(new TimerTaskWrapper(task), time);
}
/**
* Schedules the specified task for repeated <i>fixed-delay execution</i>,
* beginning after the specified delay. Subsequent executions take place
* at approximately regular intervals separated by the specified period.
*
* <p>In fixed-delay execution, each execution is scheduled relative to
* the actual execution time of the previous execution. If an execution
* is delayed for any reason (such as garbage collection or other
* background activity), subsequent executions will be delayed as well.
* In the long run, the frequency of execution will generally be slightly
* lower than the reciprocal of the specified period (assuming the system
* clock underlying <tt>Object.wait(long)</tt> is accurate).
*
* <p>Fixed-delay execution is appropriate for recurring activities
* that require "smoothness." In other words, it is appropriate for
* activities where it is more important to keep the frequency accurate
* in the short run than in the long run. This includes most animation
* tasks, such as blinking a cursor at regular intervals. It also includes
* tasks wherein regular activity is performed in response to human
* input, such as automatically repeating a character as long as a key
* is held down.
*
* @param task task to be scheduled.
* @param delay delay in milliseconds before task is to be executed.
* @param period time in milliseconds between successive task executions.
* @throws IllegalArgumentException if <tt>delay</tt> is negative, or
* <tt>delay + System.currentTimeMillis()</tt> is negative.
* @throws IllegalStateException if task was already scheduled or
* cancelled, timer was cancelled, or timer thread terminated.
*/
public void schedule(TimerTask task, long delay, long period) {
TimerTaskWrapper taskWrapper = new TimerTaskWrapper(task);
wrappedTasks.put(task, taskWrapper);
timer.schedule(taskWrapper, delay, period);
}
/**
* Schedules the specified task for repeated <i>fixed-delay execution</i>,
* beginning at the specified time. Subsequent executions take place at
* approximately regular intervals, separated by the specified period.
*
* <p>In fixed-delay execution, each execution is scheduled relative to
* the actual execution time of the previous execution. If an execution
* is delayed for any reason (such as garbage collection or other
* background activity), subsequent executions will be delayed as well.
* In the long run, the frequency of execution will generally be slightly
* lower than the reciprocal of the specified period (assuming the system
* clock underlying <tt>Object.wait(long)</tt> is accurate).
*
* <p>Fixed-delay execution is appropriate for recurring activities
* that require "smoothness." In other words, it is appropriate for
* activities where it is more important to keep the frequency accurate
* in the short run than in the long run. This includes most animation
* tasks, such as blinking a cursor at regular intervals. It also includes
* tasks wherein regular activity is performed in response to human
* input, such as automatically repeating a character as long as a key
* is held down.
*
* @param task task to be scheduled.
* @param firstTime First time at which task is to be executed.
* @param period time in milliseconds between successive task executions.
* @throws IllegalArgumentException if <tt>time.getTime()</tt> is negative.
* @throws IllegalStateException if task was already scheduled or
* cancelled, timer was cancelled, or timer thread terminated.
*/
public void schedule(TimerTask task, Date firstTime, long period) {
TimerTaskWrapper taskWrapper = new TimerTaskWrapper(task);
wrappedTasks.put(task, taskWrapper);
timer.schedule(taskWrapper, firstTime, period);
}
/**
* Schedules the specified task for repeated <i>fixed-rate execution</i>,
* beginning after the specified delay. Subsequent executions take place
* at approximately regular intervals, separated by the specified period.
*
* <p>In fixed-rate execution, each execution is scheduled relative to the
* scheduled execution time of the initial execution. If an execution is
* delayed for any reason (such as garbage collection or other background
* activity), two or more executions will occur in rapid succession to
* "catch up." In the long run, the frequency of execution will be
* exactly the reciprocal of the specified period (assuming the system
* clock underlying <tt>Object.wait(long)</tt> is accurate).
*
* <p>Fixed-rate execution is appropriate for recurring activities that
* are sensitive to <i>absolute</i> time, such as ringing a chime every
* hour on the hour, or running scheduled maintenance every day at a
* particular time. It is also appropriate for recurring activities
* where the total time to perform a fixed number of executions is
* important, such as a countdown timer that ticks once every second for
* ten seconds. Finally, fixed-rate execution is appropriate for
* scheduling multiple repeating timer tasks that must remain synchronized
* with respect to one another.
*
* @param task task to be scheduled.
* @param delay delay in milliseconds before task is to be executed.
* @param period time in milliseconds between successive task executions.
* @throws IllegalArgumentException if <tt>delay</tt> is negative, or
* <tt>delay + System.currentTimeMillis()</tt> is negative.
* @throws IllegalStateException if task was already scheduled or
* cancelled, timer was cancelled, or timer thread terminated.
*/
public void scheduleAtFixedRate(TimerTask task, long delay, long period) {
TimerTaskWrapper taskWrapper = new TimerTaskWrapper(task);
wrappedTasks.put(task, taskWrapper);
timer.scheduleAtFixedRate(taskWrapper, delay, period);
}
/**
* Schedules the specified task for repeated <i>fixed-rate execution</i>,
* beginning at the specified time. Subsequent executions take place at
* approximately regular intervals, separated by the specified period.
*
* <p>In fixed-rate execution, each execution is scheduled relative to the
* scheduled execution time of the initial execution. If an execution is
* delayed for any reason (such as garbage collection or other background
* activity), two or more executions will occur in rapid succession to
* "catch up." In the long run, the frequency of execution will be
* exactly the reciprocal of the specified period (assuming the system
* clock underlying <tt>Object.wait(long)</tt> is accurate).
*
* <p>Fixed-rate execution is appropriate for recurring activities that
* are sensitive to <i>absolute</i> time, such as ringing a chime every
* hour on the hour, or running scheduled maintenance every day at a
* particular time. It is also appropriate for recurring activities
* where the total time to perform a fixed number of executions is
* important, such as a countdown timer that ticks once every second for
* ten seconds. Finally, fixed-rate execution is appropriate for
* scheduling multiple repeating timer tasks that must remain synchronized
* with respect to one another.
*
* @param task task to be scheduled.
* @param firstTime First time at which task is to be executed.
* @param period time in milliseconds between successive task executions.
* @throws IllegalArgumentException if <tt>time.getTime()</tt> is negative.
* @throws IllegalStateException if task was already scheduled or
* cancelled, timer was cancelled, or timer thread terminated.
*/
public void scheduleAtFixedRate(TimerTask task, Date firstTime, long period) {
TimerTaskWrapper taskWrapper = new TimerTaskWrapper(task);
wrappedTasks.put(task, taskWrapper);
timer.scheduleAtFixedRate(taskWrapper, firstTime, period);
}
/**
* Cancels the execution of a scheduled task. {@link java.util.TimerTask#cancel()}
*
* @param task the scheduled task to cancel.
*/
public void cancelScheduledTask(TimerTask task) {
TaskEngine.TimerTaskWrapper taskWrapper = wrappedTasks.remove(task);
if (taskWrapper != null) {
taskWrapper.cancel();
}
}
/**
* Shuts down the task engine service.
*/
public void shutdown() {
if (executor != null) {
executor.shutdownNow();
executor = null;
}
if (timer != null) {
timer.cancel();
timer = null;
}
}
/**
* Wrapper class for a standard TimerTask. It simply executes the TimerTask
* using the executor's thread pool.
*/
private class TimerTaskWrapper extends TimerTask {
private TimerTask task;
public TimerTaskWrapper(TimerTask task) {
this.task = task;
}
public void run() {
executor.submit(task);
}
}
}