LongTree.java 16 KB
Newer Older
Matt Tucker's avatar
Matt Tucker committed
1 2 3 4 5
/**
 * $RCSfile$
 * $Revision$
 * $Date$
 *
6
 * Copyright (C) 2004 Jive Software. All rights reserved.
Matt Tucker's avatar
Matt Tucker committed
7
 *
8 9
 * This software is published under the terms of the GNU Public License (GPL),
 * a copy of which is included in this distribution.
Matt Tucker's avatar
Matt Tucker committed
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
 */

package org.jivesoftware.util;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

/**
 * A simple tree structure for long values. It's nowhere near a complete tree
 * implementation since we don't really need one. However, if anyone is
 * interested in finishing this class, or optimizing it, that would be
 * appreciated.<p>
 * <p/>
 * The tree uses three arrays to keep the tree structure. It works as in the
 * following example:
 * <p/>
 * <pre>
 *   1
 *   |-- 3
 *   |-- |--4
 *   |-- |--6
 *   |-- 5
 * <p/>
 * array index:   0 | 1 | 2 | 3 | 4
 * <p/>
 * key:           1 | 3 | 4 | 5 | 6
 * leftChild:     1 | 2 |-1 |-1 |-1
 * rightChild    -1 | 3 | 4 |-1 |-1
 * </pre>
 * <p/>
 * Where the key array holds key values, and the leftChild and rightChild arrays
 * are pointers to other array indices.<p>
 * <p/>
 * The tree holds a maximum of 65534 nodes. It is not intended to be thread-safe.
 * Based on algorithm found in the book "Introduction To Algorithms" by Cormen
 * et all, MIT Press, 1997.
 *
 * @author Matt Tucker
 */
public final class LongTree implements Cacheable, Externalizable {

    long[] keys;
    //char arrays let us address get about 65K nodes.
    char[] leftChildren;
    char[] rightSiblings;

    // Pointer to next available slot.
    char nextIndex = 2;

    /**
     * Creates a new tree.
     *
     * @param rootKey         the value of the root node of the tree.
     * @param initialCapacity the maximum initial capacity of the tree.
     */
    public LongTree(long rootKey, int initialCapacity) {
        keys = new long[initialCapacity + 1];
        leftChildren = new char[initialCapacity + 1];
        rightSiblings = new char[initialCapacity + 1];

        // New tree, so set the fields to null at root.
        keys[1] = rootKey;
        leftChildren[1] = 0;
        rightSiblings[1] = 0;
    }

    /**
     * Constructor for use with the Externalizable interface. Normal users
     * of this class <b>should not</b> call this constructor.
     */
    public LongTree() {
        // do nothing
    }

    /**
     * Adds a child to the tree.
     *
     * @param parentKey the parent to add the new value to.
     * @param newKey    new value to add to the tree.
     */
    public void addChild(long parentKey, long newKey) {
        // Find record for parent
        char parentIndex = findKey(parentKey, (char)1);
        if (parentIndex == 0) {
            throw new IllegalArgumentException("Parent key " + parentKey +
                    " not found when adding child " + newKey + ".");
        }

        // Expand the arrays if we've run out of room.
        if (nextIndex == keys.length) {
            int oldSize = keys.length;
            // Reserve room for new elements.
            int newSize = (int)Math.ceil(oldSize * 1.5);
            // Grow keys array.
            long[] newKeys = new long[newSize];
            System.arraycopy(keys, 0, newKeys, 0, oldSize);
            keys = newKeys;
            // Grow left children array.
            char[] newLeftChildren = new char[newSize];
            System.arraycopy(leftChildren, 0, newLeftChildren, 0, oldSize);
            leftChildren = newLeftChildren;
            // Grow right children array.
            char[] newRightSiblings = new char[newSize];
            System.arraycopy(rightSiblings, 0, newRightSiblings, 0, oldSize);
            rightSiblings = newRightSiblings;
        }

        // Create record for new key.
        keys[nextIndex] = newKey;
        leftChildren[nextIndex] = 0;
        rightSiblings[nextIndex] = 0;

        // Adjust references. Check to see if the parent has any children.
        if (leftChildren[parentIndex] == 0) {
            // No children, therefore make the new key the first child.
            leftChildren[parentIndex] = nextIndex;
        }
        else {
            // The parent has children, so find the right-most child.
            long siblingIndex = leftChildren[parentIndex];
            while (rightSiblings[new Long(siblingIndex).intValue()] != 0) {
                siblingIndex = rightSiblings[new Long(siblingIndex).intValue()];
            }
            // Add the new entry as a sibling of that last child.
            rightSiblings[new Long(siblingIndex).intValue()] = nextIndex;
        }

        // Finally, increment nextIndex so it's ready for next add.
        nextIndex++;
    }

    /**
     * Returns a parent of <code>childKey</code>.
     */
    public long getParent(long childKey) {
        // If the root key was passed in, return -1;
        if (keys[1] == childKey) {
            return -1;
        }

        // Otherwise, perform a search to find the parent.
        char childIndex = findKey(childKey, (char)1);
        if (childIndex == 0) {
            return -1;
        }

        // Adjust the childIndex pointer until we find the left most sibling of
        // childKey.
        char leftSiblingIndex = getLeftSiblingIndex(childIndex);
        while (leftSiblingIndex != 0) {
            childIndex = leftSiblingIndex;
            leftSiblingIndex = getLeftSiblingIndex(childIndex);
        }

        // Now, search the leftChildren array until we find the parent of
        // childIndex. First, search backwards from childIndex.
        for (int i = childIndex - 1; i >= 0; i--) {
            if (leftChildren[i] == childIndex) {
                return keys[i];
            }
        }

        // Now, search forward from childIndex.
        for (int i = childIndex + 1; i <= leftChildren.length; i++) {
            if (leftChildren[i] == childIndex) {
                return keys[i];
            }
        }

        // We didn't find the parent, so giving up. This shouldn't happen.
        return -1;
    }

    /**
     * Returns a child of <code>parentKey</code> at index <code>index</code>.
     */
    public long getChild(long parentKey, int index) {
        char parentIndex = findKey(parentKey, (char)1);
        if (parentIndex == 0) {
            return -1;
        }

        char siblingIndex = leftChildren[parentIndex];
        if (siblingIndex == -1) {
            return -1;
        }
        int i = index;
        while (i > 0) {
            siblingIndex = rightSiblings[siblingIndex];
            if (siblingIndex == 0) {
                return -1;
            }
            i--;
        }
        return keys[siblingIndex];
    }

    /**
     * Returns the number of children of <code>parentKey</code>.
     */
    public int getChildCount(long parentKey) {
        int count = 0;
        char parentIndex = findKey(parentKey, (char)1);
        if (parentIndex == 0) {
            return 0;
        }
        char siblingIndex = leftChildren[parentIndex];
        while (siblingIndex != 0) {
            count++;
            siblingIndex = rightSiblings[siblingIndex];
        }
        return count;
    }

    /**
     * Returns an array of the children of the parentKey, or an empty array
     * if there are no children or the parent key is not in the tree.
     *
     * @param parentKey the parent to get the children of.
     * @return the children of parentKey
     */
    public long[] getChildren(long parentKey) {
        int childCount = getChildCount(parentKey);
        if (childCount == 0) {
            return new long[0];
        }

        long[] children = new long[childCount];

        int i = 0;
        char parentIndex = findKey(parentKey, (char)1);
        char siblingIndex = leftChildren[parentIndex];
        while (siblingIndex != 0) {
            children[i] = keys[siblingIndex];
            i++;
            siblingIndex = rightSiblings[siblingIndex];
        }
        return children;
    }

    /**
     * Returns the index of <code>childKey</code> in <code>parentKey</code> or
     * -1 if <code>childKey</code> is not a child of <code>parentKey</code>.
     */
    public int getIndexOfChild(long parentKey, long childKey) {
        int parentIndex = findKey(parentKey, (char)1);

        int index = 0;

        char siblingIndex = leftChildren[new Long(parentIndex).intValue()];
        if (siblingIndex == 0) {
            return -1;
        }
        while (keys[siblingIndex] != childKey) {
            index++;
            siblingIndex = rightSiblings[siblingIndex];
            if (siblingIndex == 0) {
                return -1;
            }
        }
        return index;
    }

    /**
     * Returns the depth in the tree that the element can be found at or -1
     * if the element is not in the tree. For example, the root element is
     * depth 0, direct children of the root element are depth 1, etc.
     *
     * @param key the key to find the depth for.
     * @return the depth of <tt>key</tt> in the tree hiearchy.
     */
    public int getDepth(long key) {
        int[] depth = {0};
        if (findDepth(key, (char)1, depth) == 0) {
            return -1;
        }
        return depth[0];
    }

    /**
     * Returns the keys in the in the tree in depth-first order. For example,
     * give the tree:
     * <p/>
     * <pre>
     *   1
     *   |-- 3
     *   |-- |-- 4
     *   |-- |-- |-- 7
     *   |-- |-- 6
     *   |-- 5
     * </pre>
     * <p/>
     * Then this method would return the sequence: 1, 3, 4, 7, 6, 5.
     *
     * @return the keys of the tree in depth-first order.
     */
    public long[] getRecursiveKeys() {
        char startIndex = 1;
        long[] depthKeys = new long[nextIndex - 1];
        depthKeys[0] = keys[startIndex];
        int cursor = 1;
        // Iterate through each sibling, filling the depthKeys array up.
        char siblingIndex = leftChildren[startIndex];
        while (siblingIndex != 0) {
            cursor = fillDepthKeys(siblingIndex, depthKeys, cursor);
            // Move to next sibling
            siblingIndex = rightSiblings[siblingIndex];
        }
        return depthKeys;
    }

    /**
     * Returns the keys in the in the tree in depth-first order. For example,
     * give the tree:
     * <p/>
     * <pre>
     *   1
     *   |-- 3
     *   |-- |-- 4
     *   |-- |-- |-- 7
     *   |-- |-- 6
     *   |-- 5
     * </pre>
     * <p/>
     * Then this method would return the sequence: 1, 3, 4, 7, 6, 5.
     *
     * @param parentKey the parent key to get children of.
     * @return the keys of the tree in depth-first order.
     */
    public long[] getRecursiveChildren(long parentKey) {
        char startIndex = findKey(parentKey, (char)1);
        long[] depthKeys = new long[nextIndex - 1];
        int cursor = 0;
        // Iterate through each sibling, filling the depthKeys array up.
        char siblingIndex = leftChildren[startIndex];
        while (siblingIndex != 0) {
            cursor = fillDepthKeys(siblingIndex, depthKeys, cursor);
            // Move to next sibling
            siblingIndex = rightSiblings[siblingIndex];
        }
        // The cursor variable represents how many keys were actually copied
        // into the depth key buffer. Create a new array of the correct size.
        long[] dKeys = new long[cursor];
        for (int i = 0; i < cursor; i++) {
            dKeys[i] = depthKeys[i];
        }
        return dKeys;
    }

    /**
     * Returns true if the tree node is a leaf.
     *
     * @return true if <code>key</code> has no children.
     */
    public boolean isLeaf(long key) {
        int keyIndex = findKey(key, (char)1);
        if (keyIndex == 0) {
            return false;
        }
        return (leftChildren[keyIndex] == 0);
    }

    /**
     * Returns the keys in the tree.
     */
    public long[] keys() {
        long[] k = new long[nextIndex - 1];
        for (int i = 0; i < k.length; i++) {
            k[i] = keys[i];
        }
        return k;
    }

    public int getCachedSize() {
        int size = 0;
        size += CacheSizes.sizeOfObject() * 3;
        size += CacheSizes.sizeOfLong() * keys.length;
        size += CacheSizes.sizeOfChar() * keys.length * 2;
        size += CacheSizes.sizeOfChar();
        return size;
    }

    public void writeExternal(ObjectOutput out) throws IOException {
        out.writeObject(keys);
        out.writeObject(leftChildren);
        out.writeObject(rightSiblings);
        out.writeChar(nextIndex);
    }

    public void readExternal(ObjectInput in) throws IOException,
            ClassNotFoundException {
        this.keys = (long[])in.readObject();
        this.leftChildren = (char[])in.readObject();
        this.rightSiblings = (char[])in.readObject();
        this.nextIndex = in.readChar();
    }

    /**
     * Returns the index of the specified value, or 0 if the key could not be
     * found. Tail recursion was removed, but not the other recursive step.
     * Using a stack instead often isn't even faster under Java.
     *
     * @param value      the key to search for.
     * @param startIndex the index in the tree to start searching at. Pass in
     *                   the root index to search the entire tree.
     */
    private char findKey(long value, char startIndex) {
        if (startIndex == 0) {
            return 0;
        }

        if (keys[startIndex] == value) {
            return startIndex;
        }

        char siblingIndex = leftChildren[startIndex];
        while (siblingIndex != 0) {
            char recursiveIndex = findKey(value, siblingIndex);
            if (recursiveIndex != 0) {
                return recursiveIndex;
            }
            else {
                siblingIndex = rightSiblings[siblingIndex];
            }
        }
        return 0;
    }

    /**
     * Identical to the findKey method, but it also keeps track of the
     * depth.
     */
    private char findDepth(long value, char startIndex, int[] depth) {
        if (startIndex == 0) {
            return 0;
        }

        if (keys[startIndex] == value) {
            return startIndex;
        }

        char siblingIndex = leftChildren[startIndex];
        while (siblingIndex != 0) {
            depth[0]++;
            char recursiveIndex = findDepth(value, siblingIndex, depth);
            if (recursiveIndex != 0) {
                return recursiveIndex;
            }
            else {
                depth[0]--;
                siblingIndex = rightSiblings[siblingIndex];
            }
        }
        return 0;
    }

    /**
     * Recursive method that fills the depthKeys array with all the child keys in
     * the tree in depth first order.
     *
     * @param startIndex the starting index for the current recursive iteration.
     * @param depthKeys  the array of depth-first keys that is being filled.
     * @param cursor     the current index in the depthKeys array.
     * @return the new cursor value after a recursive run.
     */
    private int fillDepthKeys(char startIndex, long[] depthKeys, int cursor) {
        depthKeys[cursor] = keys[startIndex];
        cursor++;
        char siblingIndex = leftChildren[startIndex];
        while (siblingIndex != 0) {
            cursor = fillDepthKeys(siblingIndex, depthKeys, cursor);
            // Move to next sibling
            siblingIndex = rightSiblings[siblingIndex];
        }
        return cursor;
    }

    /**
     * Returs the left sibling index of index. There is no easy way to find a
     * left sibling. Therefore, we are forced to linearly scan the rightSiblings
     * array until we encounter a reference to index. We'll make the assumption
     * that entries are added in order since that assumption can yield big
     * performance gain if it's true (and no real performance hit otherwise).
     */
    private char getLeftSiblingIndex(char index) {
        //First, search backwards throw rightSiblings array
        for (int i = index - 1; i >= 0; i--) {
            if (rightSiblings[i] == index) {
                return (char)i;
            }
        }

        //Now, search forwards
        for (int i = index + 1; i < rightSiblings.length; i++) {
            if (rightSiblings[i] == index) {
                return (char)i;
            }
        }

        //No sibling found, give up.
        return (char)0;
    }
}