Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
O
OpnSense
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Kulya
OpnSense
Commits
158f0532
Commit
158f0532
authored
Apr 13, 2016
by
Ad Schellevis
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
(netflow, flowd aggregation) add request for top(X) from given dataset, small cleanups
parent
31068301
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
200 additions
and
17 deletions
+200
-17
get_timeseries.py
src/opnsense/scripts/netflow/get_timeseries.py
+1
-1
get_top_usage.py
src/opnsense/scripts/netflow/get_top_usage.py
+101
-0
aggregate.py
src/opnsense/scripts/netflow/lib/aggregate.py
+98
-16
No files found.
src/opnsense/scripts/netflow/get_timeseries.py
View file @
158f0532
...
...
@@ -70,7 +70,7 @@ if valid_params:
for
agg_class
in
lib
.
aggregates
.
get_aggregators
():
if
app_params
[
'provider'
]
==
agg_class
.
__name__
:
obj
=
agg_class
(
resolution
)
for
record
in
obj
.
get_data
(
start_time
,
end_time
,
key_fields
):
for
record
in
obj
.
get_
timeserie_
data
(
start_time
,
end_time
,
key_fields
):
record_key
=
[]
for
key_field
in
key_fields
:
if
key_field
in
record
and
record
[
key_field
]
!=
None
:
...
...
src/opnsense/scripts/netflow/get_top_usage.py
0 → 100755
View file @
158f0532
#!/usr/local/bin/python2.7
"""
Copyright (c) 2016 Ad Schellevis
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------------------------------------------
fetch top usage from data provider
"""
import
time
import
datetime
import
os
import
sys
import
ujson
sys
.
path
.
insert
(
0
,
"/usr/local/opnsense/site-python"
)
from
lib.parse
import
parse_flow
from
lib.aggregate
import
BaseFlowAggregator
import
lib.aggregates
import
params
app_params
=
{
'start_time'
:
''
,
'end_time'
:
''
,
'key_fields'
:
''
,
'value_field'
:
''
,
'filter'
:
''
,
'max_hits'
:
''
,
'provider'
:
''
}
params
.
update_params
(
app_params
)
# handle input parameters
valid_params
=
False
if
app_params
[
'start_time'
]
.
isdigit
():
start_time
=
int
(
app_params
[
'start_time'
])
if
app_params
[
'end_time'
]
.
isdigit
():
end_time
=
int
(
app_params
[
'end_time'
])
if
app_params
[
'max_hits'
]
.
isdigit
():
max_hits
=
int
(
app_params
[
'max_hits'
])
if
app_params
[
'key_fields'
]:
key_fields
=
app_params
[
'key_fields'
]
.
split
(
','
)
if
app_params
[
'value_field'
]:
value_field
=
app_params
[
'value_field'
]
valid_params
=
True
data_filter
=
app_params
[
'filter'
]
timeseries
=
dict
()
if
valid_params
:
# collect requested top
result
=
dict
()
for
agg_class
in
lib
.
aggregates
.
get_aggregators
():
if
app_params
[
'provider'
]
==
agg_class
.
__name__
:
# provider may specify multiple resolutions, we need to find the one most likely to serve the
# beginning of our timeframe
resolutions
=
sorted
(
agg_class
.
resolutions
())
history_per_resolution
=
agg_class
.
history_per_resolution
()
for
resolution
in
resolutions
:
if
(
resolution
in
history_per_resolution
\
and
time
.
time
()
-
history_per_resolution
[
resolution
]
<=
start_time
)
\
or
resolutions
[
-
1
]
==
resolution
:
selected_resolution
=
resolution
break
obj
=
agg_class
(
selected_resolution
)
result
=
obj
.
get_top_data
(
start_time
,
end_time
,
key_fields
,
value_field
,
data_filter
,
max_hits
)
print
(
ujson
.
dumps
(
result
))
else
:
print
(
'missing parameters :'
)
tmp
=
list
()
for
key
in
app_params
:
tmp
.
append
(
'/
%
s
%
s'
%
(
key
,
app_params
[
key
]))
print
(
'
%
s
%
s'
%
(
sys
.
argv
[
0
],
' '
.
join
(
tmp
)))
print
(
''
)
print
(
' start_time : start time (seconds since epoch)'
)
print
(
' end_time : end timestamp (seconds since epoch)'
)
print
(
' key_fields : key field(s)'
)
print
(
' value_field : field to sum'
)
print
(
' filter : apply filter <field>=value'
)
print
(
' provider : data provider classname'
)
print
(
' max_hits : maximum number of hits (+1 for rest of data)'
)
print
(
' sample : if provided, use these keys to generate sample data (e.g. em0,em1,em2)'
)
src/opnsense/scripts/netflow/lib/aggregate.py
View file @
158f0532
...
...
@@ -267,7 +267,32 @@ class BaseFlowAggregator(object):
# vacuum database if requested
self
.
_update_cur
.
execute
(
'vacuum'
)
def
get_data
(
self
,
start_time
,
end_time
,
fields
):
def
_parse_timestamp
(
self
,
timestamp
):
""" convert input to datetime.datetime or return if it already was of that type
:param timestamp: timestamp to convert
:return: datetime.datetime object
"""
if
type
(
timestamp
)
in
(
int
,
float
):
return
datetime
.
datetime
.
fromtimestamp
(
timestamp
)
elif
type
(
timestamp
)
!=
datetime
.
datetime
:
return
datetime
.
datetime
.
fromtimestamp
(
0
)
else
:
return
timestamp
def
_valid_fields
(
self
,
fields
):
""" cleanse fields (return only valid ones)
:param fields: field list
:return: list
"""
# validate field list (can only select fields in self.agg_fields)
select_fields
=
list
()
for
field
in
fields
:
if
field
.
strip
()
in
self
.
agg_fields
:
select_fields
.
append
(
field
.
strip
())
return
select_fields
def
get_timeserie_data
(
self
,
start_time
,
end_time
,
fields
):
""" fetch data from aggregation source, groups by mtime and selected fields
:param start_time: start timestamp
:param end_time: end timestamp
...
...
@@ -276,10 +301,7 @@ class BaseFlowAggregator(object):
"""
if
self
.
is_db_open
()
and
'timeserie'
in
self
.
_known_targets
:
# validate field list (can only select fields in self.agg_fields)
select_fields
=
list
()
for
field
in
self
.
agg_fields
:
if
field
in
fields
:
select_fields
.
append
(
field
)
select_fields
=
self
.
_valid_fields
(
fields
)
if
len
(
select_fields
)
==
0
:
# select "none", add static null as field
select_fields
.
append
(
'null'
)
...
...
@@ -288,20 +310,11 @@ class BaseFlowAggregator(object):
sql_select
+=
'from timeserie
\n
'
sql_select
+=
'where mtime >= :start_time and mtime < :end_time
\n
'
sql_select
+=
'group by mtime,
%
s
\n
'
%
','
.
join
(
select_fields
)
# make sure start- and end time are of datetime.datetime type
if
type
(
start_time
)
in
(
int
,
float
):
start_time
=
datetime
.
datetime
.
fromtimestamp
(
start_time
)
elif
type
(
start_time
)
!=
datetime
.
datetime
:
start_time
=
datetime
.
datetime
.
fromtimestamp
(
0
)
if
type
(
end_time
)
in
(
int
,
float
):
end_time
=
datetime
.
datetime
.
fromtimestamp
(
end_time
)
elif
type
(
end_time
)
!=
datetime
.
datetime
:
end_time
=
datetime
.
datetime
.
fromtimestamp
(
0
)
# execute select query
cur
=
self
.
_db_connection
.
cursor
()
cur
.
execute
(
sql_select
,
{
'start_time'
:
start_time
,
'end_time'
:
end_time
})
cur
.
execute
(
sql_select
,
{
'start_time'
:
self
.
_parse_timestamp
(
start_time
),
'end_time'
:
self
.
_parse_timestamp
(
end_time
)})
#
field_names
=
(
map
(
lambda
x
:
x
[
0
],
cur
.
description
))
for
record
in
cur
.
fetchall
():
...
...
@@ -315,3 +328,72 @@ class BaseFlowAggregator(object):
yield
result_record
# close cursor
cur
.
close
()
def
get_top_data
(
self
,
start_time
,
end_time
,
fields
,
value_field
,
data_filter
=
None
,
max_hits
=
100
):
""" Retrieve top (usage) from this aggregation.
Fetch data from aggregation source, groups by selected fields, sorts by value_field descending
use data_filter to filter before grouping.
:param start_time: start timestamp
:param end_time: end timestamp
:param fields: fields to retrieve
:param value_field: field to sum
:param data_filter: filter data, use as field=value
:param max_hits: maximum number of results, rest is summed into (other)
:return: iterator returning dict records (start_time, end_time, [fields], octets, packets)
"""
result
=
list
()
select_fields
=
self
.
_valid_fields
(
fields
)
filter_fields
=
[]
query_params
=
{}
if
value_field
==
'octets'
:
value_sql
=
'sum(octets)'
elif
value_field
==
'packets'
:
value_sql
=
'sum(packets)'
else
:
value_sql
=
'0'
# query filters
query_params
[
'start_time'
]
=
self
.
_parse_timestamp
(
start_time
)
query_params
[
'end_time'
]
=
self
.
_parse_timestamp
(
end_time
)
if
data_filter
:
tmp
=
data_filter
.
split
(
'='
)[
0
]
.
strip
()
if
tmp
in
self
.
agg_fields
and
data_filter
.
find
(
'='
)
>
-
1
:
filter_fields
.
append
(
tmp
)
query_params
[
tmp
]
=
'='
.
join
(
data_filter
.
split
(
'='
)[
1
:])
if
len
(
select_fields
)
>
0
:
# construct sql query to filter and select data
sql_select
=
'select
%
s'
%
','
.
join
(
select_fields
)
sql_select
+=
',
%
s as total
\n
'
%
value_sql
sql_select
+=
'from timeserie
\n
'
sql_select
+=
'where mtime >= :start_time and mtime < :end_time
\n
'
for
filter_field
in
filter_fields
:
sql_select
+=
' and
%
s = :
%
s
\n
'
%
(
filter_field
,
filter_field
)
sql_select
+=
'group by
%
s
\n
'
%
','
.
join
(
select_fields
)
sql_select
+=
'order by
%
s desc '
%
value_sql
# execute select query
cur
=
self
.
_db_connection
.
cursor
()
cur
.
execute
(
sql_select
,
query_params
)
# fetch all data, to a max of [max_hits] rows.
field_names
=
(
map
(
lambda
x
:
x
[
0
],
cur
.
description
))
for
record
in
cur
.
fetchall
():
result_record
=
dict
()
for
field_indx
in
range
(
len
(
field_names
)):
if
len
(
record
)
>
field_indx
:
result_record
[
field_names
[
field_indx
]]
=
record
[
field_indx
]
if
len
(
result
)
<
max_hits
:
result
.
append
(
result_record
)
else
:
if
len
(
result
)
==
max_hits
:
# generate row for "rest of data"
result
.
append
({
'total'
:
0
})
for
key
in
result_record
:
if
key
not
in
result
[
-
1
]:
result
[
-
1
][
key
]
=
""
result
[
-
1
][
'total'
]
+=
result_record
[
'total'
]
# close cursor
cur
.
close
()
return
result
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment